E%@ﬁ%@%%%&

W

Rt iEn

EENFHRRE R DRI AL

Cerebral cortex

3 Fine motor skills
E f\ < %) (speech, hand-finger
Primate 2]
Spinal cord Basal Ganglia
T |'ﬁ T T T T T T 1

Eating and drinking

Expression of emotions
Protective reflexes

Locomotion generator Breathing
Chewing
Swallowing

Eye movements

Protective reflexes
Swallowing CPG
Respiratory CPG
Locomotor CPGs
Postural networks
Chewing CPG
Expression of emotions
Saccadic motor map
Reaching

Selection
Sequencing
Timing

Grillner S, El Manira A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion.
Physiol Rev. 2020;100:271-320.




Motor cortex Broadcasting

FLEE T

\\,
Basal ganglia fh > BN DEERSH V)
Action choice « Selection -~ Dopamine
Circuits related to + Commitment -~ striatum
choice, motivation, * Vigor Bl m
and context transmit dSPN  iSPN
information for l l
movement control
to brainstem " - )
« i irad A J selection
lines
- Colliculus
Populations ] @
Diagram of the different components from
cortex and basal ganglia to spinal central
pattern generators (CPGs) regulating basic
aspects of locomotor propulsion. The basal
i ganglia and the striatal projection neurons of
Co d lH'gh'SP‘?Ed the direct pathway (dSPN) initiate locomotion,
s ""T::i‘ds » :Com i while the indirect pathway (iSPN) inhibits
cg;c'r:alrfdlinzchf:n:ng '::2::"‘ movement via globus pallidus externa (GPe)
the brainstem activate S and the subthalamic nucleus (STN).The output
executive circuits in contraction from the basal ganglia [substantia nigra, pars
the spinal cord. MLR reticulata(SNr), and globus pallidus interna
. command (GPi)] acts on the mesencephalic locomotor
PPN/cuneiform region (MLR) consisting of the
pedunculopontine (PPN)and cuneiform
. nucleus, which in turn impinge on
ret spinal Steering reticulospinal neurons in the lateral
Eigiit vy LPG' sup. coll.  paragigantocellular nucleus (LPGi) that
ecution | - controls the spinal CPGs. The basal ganglia
Executive circuits Spinal 'F“’d posture receive input from cortex, thalamus, and
g::fosl':;:fslccls;d 'E’i‘i‘;‘f&"e dopamine neurons in substantia nigra, pars
that govern body W - compacta(SNc). Inhibitory structures are
movements. i’ The contribution of different sensory depicte_d in_ blue, excitatory in red, and
parts of the nervous system in control dopamine in green.
the control of movement. [From t
Skeletal muscles Arber and Costa ] Teifel sl
VYATFF
% Basal Ganglia
(FR#) Eye motor map g
Lamprey Optic tectum /Optec
Periaqueductal gray
= Spinal cord
Spawning )
LI e B e e T 7 e e ——— behaviour
\ /1 Swallowing - Breathing  fignt fiight and
freezing
Locomotor CPG .
MMC: medial motor column
Trunk motoneuronsA® Y |
swimming% & %
Mammals
Birds \ MMC
o Legs and 4
Amphibians ﬁMC j
;eL?;ts = >0 E
BR Rep(t:||c1as4 P Undulatory locomotion
S—A— lamprey, fish, salamander and snakes
420 mya um mitor comn

million years ago
560 mya

Lampreys
VYAIFE

No fins L

Amphioxus
FAOTYHF

LMC: lateral motor column
EL-EROEDETS

1
Hand) mmas m
Inlm\s«: flexors >
Vil
lnmnsvc fextensors 1 Vil \
Limb muscies on.g.mmg /

from the mmk /
Rectus abdo "‘" Madjal'motor column_
Longissimus aom.\

) e \ MMC

0 Pl e e AL

sl LMC
Anterior musdies lower [ fins or limbs

leg: dorsal flexors foot Lateral motor column

Locomotion with fins/limbs

Megkal motor column rays to mammals



Execution Adaptation

EIL'; via Cerebellum via

PPN vestibulospinal

cortex/pallium

-« hyperdirect pathyay

rubrospinal

Sunerormis D Spinal cord reticulospinal

thalamus excitatory LPGi

striatum e |

Diencephalic locomotor region CPG
Mesencephalic locomotor region
motoneurons

Modulation Precision

walking

Serotonin
Raphe

Basal ganglia

Noradrenaline Corticospinal

Locus coeruleus Stop cells

direct “go direct “no go” pathway Pontine V2a
e iaes Lateral paragigantocellular

tectum/MLR/DLR nucleus (ZE8%)

saccades swallowing Inferior colliculus
locomotion  posture Superior colliculus

YYXTFFEhOHY

LPGi
glutamate

pontine V2a

glutamate

cerebral cortex

initiate
locomation

Six dorsal progenitor domains

Lamprey CPG
MLR DLR

[ ¢

Glutamate
Brainstem
Reticulospinal @ .—.
Glycine
Spinal . .
cord Excitatory interneurons
Inhibitory interneurons
sensory sensory
N
G JY T ONES
SR-I . :?_ SR-l
. >
V2a interneurons ! T — *
Five ventral progenitor domains
.

Stretch receptor neurons-excitatory
Stretch receptor neurons-inhibitor:

NETWORK INTEGRATED MODULATION

Motoneurons

5-HT, DA, GABA, TK & mGIuR



Role of cerebellum: fine tuning of the locomotor movements
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Ferreira-Pinto MJ, et al. Connecting Circuits for Supraspinal Control of Locomotion. Neuron 2018;100:361-374.
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Figure 1. Temporal and Regulatory Categories of Locomotion

(A) Division of the locomotor process in three behavioral phases (initiation, locomotion, and termination).

(B) A locomotor episode can range from low-speed exploration to high-speed escaping, during which different locomotor speeds align with
alternating or synchronous gait and patterns, and can have different directions of the chosen trajectory (illustrated by three example mice;
(1) low-speed exploration, (2) backward walking, and (3) high-speed locomotion).
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Figure 3. Functional and Cellular Diversity of the Mouse MLR
(A) MLR processes contextual information and its descending pathways signal to caudal brainstem neurons to influence locomotor output.
(B) Summary diagram of historical electrical site-mapping experiments in the cat CnF and PPN to define locations influencing locomotion

(see Takakusaki et al., 2016, for review).

speed-dependent o .
step synchronization transcription factor expression (left), or the

Figure 2. Diversity and Specificity in Spinal
Circuits for Execution of Locomotion

(A) Summary diagram of spinal circuits in zebrafish
(left) and mice (right) implicated in the regulation
of speed-linked locomotor parameters.

(B) Schematic summary of the role of RORb-
expressing spinal GABAergic neurons in sensory
gating through presynaptic inhibition and influence
on behavior.

(C) Rostro-caudal organization of spinal circuits
based on Chx10-expression levels, Hox

organization of descending projections from the
cervical to the lumbar spinal cord and their
influence on fore- and hindlimb coordination

during locomotion (right).

(D) Proposed model of how supraspinal commands
may signal locomotor parameters, including speed,
gait, latency, or direction, to spinal executive
microcircuits that in turn regulate locomotor output.
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(C) Schematic diagram summarizing recent findings on the role of mouse MLR-vGlut2 neurons subdivided by location within CnF (cuneiform
nucleus) and PPN (pedunculopontine nucleus). Both CnF and PPN also contain vGAT neurons, but only PPN contains cholinergic neurons.
(D) Summary diagram of PPN-vGlut2 neuron projections to ascending targets and known implicated functions.
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Figure 4. Brainstem Cell Types Regulating
Locomotion

(A) Subdivision of ventral medulla into four
regions (LPGi, lateral paragigantocellular nucleus;
GiA, gigantocellular nucleus alpha; GiV,
gigantocellular nucleus ventral; Gi, gigantocellular
nucleus) all containing intermingled
neurotransmitter (NT)- stratified (vGlut2/vGAT)
neurons (7N demarcates facial motor nucleus).
Table (right) summarizes behavioral findings from
optogenetic activation experiments of different
neuronal subpopulations.

(B and C) Ablation of LPGi-vGlut2 neurons impairs
high-speed locomotion (B) and attenuates speed
of locomotion induced by optogenetic stimulation
of MLR-vGlut2 neurons (C).

(D) vGlut2 neurons expressing the transcription
factor Chx10 in the rostral gigantocellular nucleus
(Gi) implicated in halting by signaling through
locomotion-inhibiting circuits in the spinal cord.
(E) Glycinergic neurons in the pontine reticular
formation project ascendingly to the intralaminar
nucleus of the thalamus (IL) to attenuate
locomotion.

(F) Summary of firing properties of three
populations of neurons in the lamprey reticular
formation implicated in locomotor control.
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Figure 6. Circuits for Behavioral Need and Context Influencing Locomotion
(A) Periaqueductal gray (PAG) and associated structures are central in processing information about danger and needs in order to then signal

through brainstem circuits to adjust locomotor state as part of numerous

defensive and appetitive behaviors.

(B-D) Summary of functionally known (solid) and inferred (dashed) circuit organization for the PAG (B), superior colliculus (C), and forebrain
circuits implicated in defensive and hunting behaviors (D). Neurons shown in boxes implies that there might be multiple neuronal

subpopulations processing the shown inputs.
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Sultan F, Glickstein M. The cerebellum: Comparative and animal studies. Cerebellum 2007;6:168-76.
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Hibi M, et al. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum.
Dev Growth Differ 2017;59:228-243. 847 Ray-finned fish AR mammal
LB D A B & B -
S Neocortex ML Ba |
et Purkinje cell
PCL PC s
l Lu Go
GeL ot !
uBc
MF
= 7 —
p——=@ DCN
— =~ —o0 00— oF

Ba, basket cell; CF, climbing fiber; DCN, deep cerebellar nuclei; EC, eurydendroid cell; GC, granule
cell; GCL, granule cell layer; Go, Golgi cell; Lu, Lugaro cell; MF, mossy fiber; ML, molecular layer;
PC, Purkinje cell; PCL, Purkinje cell layer; St, stellate cell; UBC, unipolar brush cell.
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Diversity of cerebellum

Structures of vertebrate cerebella
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(A) Variations in cerebellum morphology during
development. Dorsal views of the cerebellum.
Atoh1l+ GC progenitor domains are marked by blue
shading. The proliferating GC progenitors are
located in the medial and caudal regions, which are
derived from the URL, in shark, paddlefish, and
zebrafish. In the frog cerebellum, non-proliferating
Atoh1l+ GCs expand to transiently form an EGL-like
layer (green shading) at metamorphosis. In the
mouse cerebellum, proliferating Atohl+ GC
progenitors expand to form the EGL.

(B) Changes in cellular (gray text) and genetic (blue
text) programs that generated diversity in the
cerebellum during evolution.
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Gill JS, Sillitoe RV. Functional Outcomes of Cerebellar Malformations. Front Cell Neurosci 2019:13:441.
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Butts T, et al. Development of the cerebellum: simple steps to make a 'little brain’. Development
2014;141:4031-41.
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Fig. 2. Variations in cerebellar morphology. Variation in the morphology and of the adult cerebellum (green) across vertebrates is
reflected in developmental adaptations of the granule cell precursor pool (red). Cerebellar expansion in basal fish corresponds to
linear extensions of the rhombic lip axially (spiny dogfish)or medially (paddlefish). In other clades, granule cells (pink shaded area)
are distributed in an internal layer that is co-extensive with the overlying Purkinje cells (blue). To achieve this, granule cells migrate
internal to (teleosts and tadpoles) or external to (metamorphic amphibians, birds and mammals) and then through the Purkinje cell
layer. Only in birds and mammals do granule cell precursors themselves migrate in substantial numbers to form a transient external
germinal layer. **A theoretical model of the as yet uncharacterised embryonic lamprey.
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Precuneus =
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Dadario NB, Sughrue ME. The functional role of the precuneus. Brain 2023;146:3598-3607.

essina A, et al. Clinical anatomy of
e precuneus and pathogenesis of
e schizophrenia. Anat Sci Int

2023;98:473-481.
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(1) Self-Knowledge,
Interoception, Sensorimotor
Dynamics, Circadian Rhythm,
Reward (Anticipation, Initial
Response, Effort)
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Perception, External Agency

(3) Fear, Sustained Threat,
Grief

(4) Working Memory

(Limited Capacity and Updating)
(5) Facial and Non-Facial
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- Dorsal-anterior: frontal-parietal cortex & E#& L. mental representation of space. object-body relations. visual guided

movementiZBE5 Y %

- Dorsal-posterior: occipital-parietal lobes & hippocampus|Z3&#& L. visual-spatial information, deductive reasoning ssees
#. spatial navigation, motor imagery% 4124 % Z & cognitive and abstract reasoning processes|(Zf#+ 11 % spatial
mental modelsZ{FW BT Z &L &AL T 5

- Ventral: cingulate, temporal, and limbic lobe & ##& L. emotional and episodic memory processing|lZ 859 %,
autobiographic events# IXEE 3 % 7= & D EF & /12 K.Sepisodic memory retrieval DBRITEML SN B, visuospatial
informationl¥Z Z ca— Pt S h7=BBEICIFHINS
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