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Bond KM, et al. Dentate/Update: Imaging Features of Entities That Affect the Dentate Nucleus. AJNR Am J Neuroradiol 2017;38:1467-1474.
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Tellmann S, et al. Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of
their co-activation patterns. Front. Neuroanat 2015:9;54.
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3D model of the deep cerebellar nuclei (posterior to anterior view) of an individual
brain (post mortem brain10); visualization by Amira 5.6.0 (www.amira.com). Dorsal dentate
nucleus (DDN; magenta); ventral dentate nucleus (VDN; green); emboliform

| i nucleus (EN; red); globose nucleus (GN; blue); fastigial nucleus (FN; yellow). Due
é."“”‘s}, to the smoothing, the dentate appears less denticulated than it is. The
Aerd®, transparency of the right ventral dentate nucleus clarifies the partly covered extend

of the DDN.
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(Left) Localization and extent of cerebellar nuclei in a
rostro-caudal sequence of histological sections of a post

mortem brain; distance between sections 60 pm. *ﬁa %%ﬁk%q—%ﬁi 0) Jﬁiﬂjﬁ*z Lj:
(Right) Cytoarchitecture of each cerebellar nucleus and the *qi%}c%[ﬂ H@% EFD ,':Ij jj ‘E‘B(J:/J\HEXIH}\E) %/E\/\ch HD%E ?E_‘j—

two parts of the dentate nucleus. Magenta: dorsal dentate
nucleus (DDN); green: ventral dentate nucleus (VDN);
red: emboliform nucleus (EN); blue: globose nucleus (GN);
yellow: fastigial nucleus (FN).



Tacyildiz AE, et al. Dentate Nucleus: Connectivity-Based Anatomic Parcellation Based on Superior Cerebellar Peduncle Projections. World Neurosurg 2021:152:e408-e428.
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Kebschull JM, et al. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. Cerebellum 2023: 10.1007/s12311-022-01506-0.
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Basile GA, et al. Red nucleus structure and function: from anatomy to clinical neurosciences
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Olivares-Moreno R, et al. Corticospinal vs Rubrospinal Revisited: An . . X reticulospinal
Evolutionary Perspective for Sensorimotor Integration. Front Neurosci -Cortlcosplnal - rUbYOSpmal P

2021:15:686481.
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Grillner S, El Manira A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion.
Physiol Rev. 2020;100:271-320.
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Diagram of the different components from
cortex and basal ganglia to spinal central
pattern generators (CPGs) regulating basic
aspects of locomotor propulsion. The basal
ganglia and the striatal projection neurons of
the direct pathway (dSPN) initiate locomotion,
while the indirect pathway (iSPN) inhibits
movement via globus pallidus externa (GPe)
and the subthalamic nucleus (STN).The output
from the basal ganglia [substantia nigra, pars
reticulata(SNr), and globus pallidus interna
(GPi)] acts on the mesencephalic locomotor
region (MLR) consisting of the
pedunculopontine (PPN)and cuneiform
nucleus, which in turn impinge on
reticulospinal neurons in the lateral
paragigantocellular nucleus (LPGi) that
controls the spinal CPGs. The basal ganglia
receive input from cortex, thalamus, and
dopamine neurons in substantia nigra, pars
compacta(SNc). Inhibitory structures are
depicted in blue, excitatory in red, and
dopamine in green.
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Role of cerebellum: fine tuning of the locomotor movements
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Ferreira-Pinto MJ, et al. Connecting Circuits for Supraspinal Control of Locomotion. Neuron 2018;100:361-374.
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Figure 3. Functional and Cellular Diversity of the Mouse MLR

(A) MLR processes contextual information and its descending pathways signal to caudal brainstem neurons to influence locomotor output.
(B) Summary diagram of historical electrical site-mapping experiments in the cat CnF and PPN to define locations influencing locomotion
(see Takakusaki et al., 2016, for review).

(C) Schematic diagram summarizing recent findings on the role of mouse MLR-vGlut2 neurons subdivided by location within CnF (cuneiform

nucleus) and PPN (pedunculopontine nucleus). Both CnF and PPN also contain vGAT neurons, but only PPN contains cholinergic neurons.
(D) Summary diagram of PPN-vGlut2 neuron projections to ascending targets and known implicated functions.
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Figure 6. Circuits for Behavioral Need and Context Influencing Locomotion

(A) Periaqueductal gray (PAG) and associated structures are central in processing information about danger and needs in order to then signal
through brainstem circuits to adjust locomotor state as part of numerous defensive and appetitive behaviors.

(B-D) Summary of functionally known (solid) and inferred (dashed) circuit organization for the PAG (B), superior colliculus (C), and forebrain
circuits implicated in defensive and hunting behaviors (D). Neurons shown in boxes implies that there might be multiple neuronal
subpopulations processing the shown inputs.
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Caggiano V, et al. Midbrain circuits that set locomotor speed and gait

selection. Nature 2018;553:455-460.
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Gatto G, Goulding M. Locomotion Control: Brainstem Circuits Satisfy the
Need for Speed. Curr Biol 2018;28:R256-R259.
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Anatomical and functional characterization of a bimodal circuit for speed.
— {EHEEPM By DS LA T L IR 22 E IR I A The mesencephalic motor region comprises two areas: the pedunculopontine nucleus (PPN)

— HAEHIM  LFL ZEU LHL AR RFL &RIE RHL G and cuneiform nucleus (CnF).

Walk : 3~4KDHTRAKICXZ %
Trot : AR EDFIR & RERA AR ISESN T

The pedunculopontine nucleus has at least three neurochemically distinct populations:
glutamatergic (purple), cholinergic (yellow) and inhibitory neurons (green).

The cuneiform nucleus is a mix of glutamatergic and inhibitory interneurons.

The lateral paragigantocellular nucleus (LPGi) resides in the medulla and is as

oo 3 S g P N o= s heterogeneous as the pedunculopontine nucleus.
GaHOp BIRD O DICTNTEE . BEAIZIZRAKICESHT 2 The midbrain areas, like the superior colliculus and periaqueductal grey, initiate fast escape
Bound : &k & AIfR A AR ICE =, BIR & BRIRDEENT B AAED i

responses, which are relayed to the effector circuits in the spinal cord via the cuneiform
nucleus-lateral paragigantocellular nucleus pathway (red arrows).
Conversely, motor cortex and basal ganglia promote a series of goal-directed movements that

- are translated into slow-paced exploratory motor behavior via the pedunculopontine nucleus-
MLRAEZ) /5 — > %R B i ivati i

induced activation of probably lateral paragigantocellular nucleus and other medullary and
spinal nuclei (blue arrows).
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Froesel M et al. A multisensory perspective onto primate pulvinar functions. Neurosci Biobehav Rev 2021;125:231-243. P U |\/| n a r
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ventral Benarroch EE. Pulvinar: associative role in

cortical function and clinical correlations.

Neurology 2015;84:738-47.
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Georgescu IA, et al. The Anatomical and Functional Heterogeneity of the Mediodorsal Thalamus. Brain Sci 2020;10:624.
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